Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38708907

RESUMEN

BACKGROUND: A small proportion of Escherichia coli and Klebsiella pneumoniae demonstrate in vitro non-susceptibility to piperacillin/tazobactam but retain susceptibility to ceftriaxone. Uncertainty remains regarding how best to treat these isolates. OBJECTIVES: We sought to compare clinical outcomes between patients with piperacillin/tazobactam-non-susceptible but ceftriaxone-susceptible E. coli or K. pneumoniae bloodstream infection receiving definitive therapy with ceftriaxone versus an alternative effective antibiotic. METHODS: We retrospectively identified patients with a positive blood culture for piperacillin/tazobactam-non-susceptible but ceftriaxone-susceptible E. coli or K. pneumoniae between 1 January 2013 and 31 December 2022. Patients were divided into one of two definitive treatment groups: ceftriaxone or alternative effective antibiotic. Our primary outcome was a composite of 90 day all-cause mortality, hospital readmission, or recurrence of infection. We used Cox proportional hazards models to compare time with the composite outcome between groups. RESULTS: Sixty-two patients were included in our analysis. Overall, median age was 63 years (IQR 49.5-71.0), the most common source of infection was intra-abdominal (25/62; 40.3%) and the median total duration of therapy was 12.0 days (IQR 9.0-16.8). A total of 9/22 (40.9%) patients in the ceftriaxone treatment group and 18/40 (45.0%) patients in the alternative effective antibiotic group met the composite endpoint. In an adjusted time-to-event analysis, there was no difference in the composite endpoint between groups (HR 0.67, 95% CI 0.30-1.50). The adjusted Bayesian posterior probability that the HR was less than or equal to 1 (i.e. ceftriaxone is as good or better than alternative therapy) was 85%. CONCLUSIONS: These findings suggest that ceftriaxone can be used to effectively treat bloodstream infections with E. coli or K. pneumoniae that are non-susceptible to piperacillin/tazobactam but susceptible to ceftriaxone.

2.
Tuberculosis (Edinb) ; 144: 102462, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070353

RESUMEN

Much of the high mortality in tuberculosis meningitis (TBM) is attributable to excessive inflammation, making it imperative to identify targets for host-directed therapies that reduce pathologic inflammation and mortality. In this study, we investigate how cytokines and metabolites in the cerebral spinal fluid (CSF) associate with TBM at diagnosis and during TBM treatment. At diagnosis, TBM patients (n = 17) demonstrate significant increases of cytokines and chemokines that promote inflammation and cell migration including IL-17A, IL-2, TNFα, IFNγ, and IL-1ß versus asymptomatic controls without known central nervous system pathology (n = 20). Inflammatory immune signaling had a strong positive correlation with immunomodulatory metabolites including kynurenine, lactic acid, and carnitine and strong negative correlations with tryptophan and itaconate. Inflammatory immunometabolic networks were only partially reversed with two months of effective TBM treatment and remained significantly different compared to CSF from controls. Together, these data highlight a critical role for host metabolism in regulating the inflammatory response to TBM and indicate the timeline for restoration of immune homeostasis in the CSF is prolonged.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Humanos , Tuberculosis Meníngea/diagnóstico , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/líquido cefalorraquídeo , Inflamación , Citocinas , Quimiocinas
3.
Plant Physiol ; 194(2): 698-714, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37864825

RESUMEN

Microalgae play an essential role in global net primary productivity and global biogeochemical cycling. Despite their phototrophic lifestyle, over half of algal species depend for growth on acquiring an external supply of the corrinoid vitamin B12 (cobalamin), a micronutrient produced only by a subset of prokaryotic organisms. Previous studies have identified protein components involved in vitamin B12 uptake in bacterial species and humans. However, little is known about its uptake in algae. Here, we demonstrate the essential role of a protein, cobalamin acquisition protein 1 (CBA1), in B12 uptake in Phaeodactylum tricornutum using CRISPR-Cas9 to generate targeted knockouts and in Chlamydomonas reinhardtii by insertional mutagenesis. In both cases, CBA1 knockout lines could not take up exogenous vitamin B12. Complementation of the C. reinhardtii mutants with the wild-type CBA1 gene restored B12 uptake, and regulation of CBA1 expression via a riboswitch element enabled control of the phenotype. When visualized by confocal microscopy, a YFP-fusion with C. reinhardtii CBA1 showed association with membranes. Bioinformatics analysis found that CBA1-like sequences are present in all major eukaryotic phyla. In algal taxa, the majority that encoded CBA1 also had genes for B12-dependent enzymes, suggesting CBA1 plays a conserved role. Our results thus provide insight into the molecular basis of algal B12 acquisition, a process that likely underpins many interactions in aquatic microbial communities.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Diatomeas , Humanos , Vitamina B 12/genética , Vitamina B 12/metabolismo , Chlamydomonas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Bacterias/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
4.
Front Plant Sci ; 14: 1208168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575910

RESUMEN

Remediation using micro-algae offers an attractive solution to environmental phosphate (PO4 3-) pollution. However, for maximum efficiency, pre-conditioning of algae to induce 'luxury phosphorus (P) uptake' is needed. To replicate this process, we targeted the global regulator PSR1 (Myb transcription factor: Phosphate Starvation Response 1) for over-expression in algae. Manipulating a single gene (PSR1) drove uptake of both PO4 3- and a Mg2+ counter-ion leading to increased PolyP granule size, raising P levels 4-fold to 8% dry cell weight, and accelerated removal of PO4 3- from the medium. Examination of the gene expression profile showed that the P-starvation response was mimicked under P-replete conditions, switching on luxury uptake. Hyper-accumulation of P depended on a feed-forward mechanism, where a small set of 'Class I' P-transporter genes were activated despite abundant external PO4 3- levels. The transporters drove a reduction in external PO4 3- levels, permitting more genes to be expressed (Class II), leading to more P-uptake. Our data pointed toward a PSR1-independent mechanism for detection of external PO4 3- which suppressed Class II genes. This model provided a plausible mechanism for P-overplus where prior P-starvation elevates PSR1 and on P-resupply causes luxury P-uptake. This is because the Class I genes, which include P-transporter genes, are not suppressed by the excess PO4 3-. Taken together, these discoveries facilitate a bio-circular approach of recycling nutrients from wastewater back to agriculture.

5.
medRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425849

RESUMEN

Much of the high mortality in tuberculosis meningitis (TBM) is attributable to excessive inflammation, making it imperative to identify targets for host-directed therapies that reduce pathologic inflammation and mortality. In this study, we investigate how cytokines and metabolites in the cerebral spinal fluid (CSF) associate with TBM at diagnosis and during TBM treatment. At diagnosis, TBM patients demonstrate significant increases versus controls of cytokines and chemokines that promote inflammation and cell migration including IL-17A, IL-2, TNFα, IFNγ, and IL-1ß. Inflammatory immune signaling was strongly correlated with immunomodulatory metabolites including kynurenine, lactic acid, carnitine, tryptophan, and itaconate. Inflammatory immunometabolic networks were only partially reversed with two months of effective TBM treatment and remained significantly different versus control CSF. Together, these data highlight a critical role for host metabolism in regulating the inflammatory response to TBM and indicate the timeline for restoration of immune homeostasis in the CSF is prolonged.

6.
Colloids Surf B Biointerfaces ; 221: 113026, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410191

RESUMEN

The delivery of lipophilic dyes, such as BODIPY 505/515, to cells is often hindered by their low aqueous solubility, necessitating the use of organic solvents to facilitate the delivery, which unfortunately compromises the viability of the cells. In this work, we demonstrate the generation of novel composite hydrogel microparticles loaded with BODIPY 505/515, which can be used to deliver the dye to microalgal cells to stain the intracellular lipids. The microparticles were prepared by combining polymeric micelles with hydrogel technology to obtain microparticles of enhanced loading capacity. The generated hydrogel microparticles were tested by incubation with Phaeodactylum tricornutum algal cells. The cells were rapidly and successfully stained by the dye-containing microparticles, and their viability was not affected by the staining process. The method can also be used to stain other types of microalgal cells, such as Nannochloropsis gaditana cells. We therefore believe that this work offers a versatile and useful solution to important cell-staining problems in biotechnology.


Asunto(s)
Microalgas , Microfluídica , Hidrogeles , Coloración y Etiquetado , Colorantes
7.
Front Pharmacol ; 13: 1048653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578553

RESUMEN

Background: Tuberculosis meningitis (TBM) is the most lethal form of TB. It is difficult to treat in part due to poor or uncertain drug penetration into the central nervous system (CNS). To help fill this knowledge gap, we evaluated the cerebrospinal fluid (CSF) concentrations of fluoroquinolones and carbapenems in patients being treated for TBM. Methods: Serial serum and CSF samples were collected from hospitalized patients being treated for TBM. CSF was collected from routine lumbar punctures between alternating timepoints of 2 and 6 h after drug administration to capture early and late CSF penetration. Rich serum sampling was collected after drug administration on day 28 for non-compartmental analysis. Results: Among 22 patients treated for TBM (8 with confirmed disease), there was high use of fluoroquinolones (levofloxacin, 21; moxifloxacin, 10; ofloxacin, 6) and carbapenems (imipenem, 11; meropenem, 6). Median CSF total concentrations of levofloxacin at 2 and 6 h were 1.34 mg/L and 3.36 mg/L with adjusted CSF/serum ratios of 0.41 and 0.63, respectively. For moxifloxacin, the median CSF total concentrations at 2 and 6 h were 0.78 mg/L and 1.02 mg/L with adjusted CSF/serum ratios of 0.44 and 0.62. Serum and CSF concentrations of moxifloxacin were not affected by rifampin use. Among the 76 CSF samples measured for carbapenem concentrations, 79% were undetectable or below the limit of detection. Conclusion: Fluoroquinolones demonstrated high CSF penetration indicating their potential usefulness for the treatment of TBM. Carbapenems had lower than expected CSF concentrations.

8.
Open Forum Infect Dis ; 9(7): ofac323, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36420425

RESUMEN

Background: It is uncertain whether diabetes affects the risk of developing latent tuberculosis infection (LTBI) following exposure to Mycobacterium tuberculosis (Mtb). We assessed the relationship of diabetes or prediabetes and LTBI among close and household contacts (HHCs) of patients with active pulmonary tuberculosis (TB) disease in Addis Ababa, Ethiopia. Methods: In this cross-sectional study, we performed interferon-γ release assays, TB symptom screening, and point-of-care glycolated hemoglobin (HbA1c) testing among HHCs of active TB cases. Diabetes status was classified into diabetes (HbA1c ≥6.5% or self-reported diagnosis), prediabetes (5.7%-6.4%), and euglycemia (≤5.6%). Multivariable logistic regression was used to determine the association of diabetes with LTBI. Results: Among 597 study participants, 123 (21%) had dysglycemia including diabetes (n = 31) or prediabetes (n = 92); 423 (71%) participants were diagnosed with LTBI. Twelve of 31 (39%) HHCs with diabetes were previously undiagnosed with diabetes. The prevalence of LTBI among HHCs with diabetes, prediabetes, and euglycemia was 87% (27/31), 73% (67/92), and 69% (329/474), respectively. In multivariable analysis adjusted for age, sex, and HIV status, the odds of LTBI among HHCs with diabetes were 2.33 (95% confidence interval [CI], .76-7.08) times the odds of LTBI without diabetes. When assessing interaction with age, the association of diabetes and LTBI was robust among participants aged ≥40 years (adjusted odds ratio [aOR], 3.68 [95% CI, .77-17.6]) but not those <40 years (aOR, 1.15 [95% CI, .22-6.1]). Conclusions: HHCs with diabetes may be more likely to have LTBI than those with euglycemia. Further investigations are needed to assess mechanisms by which diabetes may increase risk of LTBI after Mtb exposure.

9.
New Phytol ; 235(5): 1853-1867, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653609

RESUMEN

Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.


Asunto(s)
Diatomeas , Riboswitch , Diatomeas/genética , Diatomeas/metabolismo , Hongos/genética , Riboswitch/genética , Tiamina/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
10.
PLoS One ; 17(6): e0270201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749509

RESUMEN

BACKGROUND: Little is known about the impact of drug-resistance on clinical outcomes among patients with tuberculosis meningitis (TBM). METHODS: A retrospective cohort study among patients treated for TBM in Tbilisi, Georgia. We performed medical chart abstraction to collect patient data. Long-term vital status was assessed using the Georgia National Death Registry. We utilized a Cox proportional-hazards model to evaluate the association of drug-resistance and mortality. RESULTS: Among 343 TBM suspects, 237 had a presentation consistent with TBM. Drug resistance was suspected (n = 5) or confirmed (n = 31) in 36 patients including 30 with multidrug- or rifampin-resistance and 6 with isoniazid-resistance. Thirty-four patients had HIV. The median follow-up time was 1331 days (IQR, 852-1767). Overall, 73 of 237 (30%) people died with 50 deaths occurring during and 23 after treatment. The proportion of death was higher among patients with drug-resistant vs. drug-susceptible disease (67% vs. 24%, p<0.001) and with HIV versus no HIV (59% vs 27%, p<0.001). Mortality was significantly higher in patients with drug-resistant TBM after 90 days of treatment (aHR = 7.2, CI95% [3.6-14.3], p < 0.001). CONCLUSIONS: Mortality was high among patients with drug-resistant TBM with many deaths occurring post treatment. More effective treatment options are urgently needed for drug-resistant TBM.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis Meníngea , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Resistencia a Medicamentos , Infecciones por VIH/tratamiento farmacológico , Humanos , Estudios Retrospectivos , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
11.
Artículo en Inglés | MEDLINE | ID: mdl-35601658

RESUMEN

We assessed the prevalence of antibiotic prescriptions among ambulatory patients tested for coronavirus disease 2019 (COVID-19) in a large public US healthcare system and found a low overall rate of antibiotic prescriptions (6.7%). Only 3.8% of positive severe acute respiratory coronavirus virus 2 (SARS-CoV-2) tests were associated with an antibiotic prescription within 7 days.

12.
Biotechnol J ; 17(10): e2200088, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35509114

RESUMEN

The chloroplast represents an attractive compartment for light-driven biosynthesis of recombinant products, and advanced synthetic biology tools are available for engineering the chloroplast genome ( = plastome) of several algal and plant species. However, producing commercial lines will likely require several plastome manipulations. This presents issues with respect to selectable markers, since there are a limited number available, they can be used only once in a serial engineering strategy, and it is undesirable to retain marker genes for antibiotic resistance in the final transplastome. To address these problems, we have designed a rapid iterative selection system, known as CpPosNeg, for the green microalga Chlamydomonas reinhardtii that allows creation of marker-free transformants starting from wild-type strains. The system employs a dual marker encoding a fusion protein of E. coli aminoglycoside adenyltransferase (AadA: conferring spectinomycin resistance) and a variant of E. coli cytosine deaminase (CodA: conferring sensitivity to 5-fluorocytosine). Initial selection on spectinomycin allows stable transformants to be established and driven to homoplasmy. Subsequent selection on 5-fluorocytosine results in rapid loss of the dual marker through intramolecular recombination between the 3'UTR of the marker and the 3'UTR of the introduced transgene. We demonstrate the versatility of the CpPosNeg system by serial introduction of reporter genes into the plastome.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Regiones no Traducidas 3' , Aminoglicósidos , Biomarcadores/metabolismo , Chlamydomonas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Escherichia coli/genética , Flucitosina/metabolismo , Espectinomicina/metabolismo , Transformación Genética
13.
Environ Microbiol ; 24(7): 3134-3147, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593514

RESUMEN

Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.


Asunto(s)
Chlamydomonas , Simbiosis , Bacterias/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mesorhizobium , Vitamina B 12/genética , Vitamina B 12/metabolismo
14.
Clin Infect Dis ; 75(4): 682-689, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849645

RESUMEN

BACKGROUND: The ability of antituberculosis drugs to cross the blood-brain barrier and reach the central nervous system is critical to their effectiveness in treating tuberculosis meningitis (TBM). We sought to fill a critical knowledge gap by providing data on the ability of new and repurposed antituberculosis drugs to penetrate into the cerebrospinal fluid (CSF). METHODS: We conducted a clinical pharmacology study among patients treated for TBM in Tbilisi, Georgia, from January 2019 until January 2020. Serial serum and CSF samples were collected while patients were hospitalized. CSF was collected from routine lumbar punctures with the timing of the lumbar puncture alternating between 2 and 6 hours to capture early and late CSF penetration. RESULTS: A total of 17 patients treated for TBM (8 with confirmed disease) were included; all received linezolid, with a subset receiving cycloserine (5), clofazimine (5), delamanid (4), and bedaquiline (2). All CSF measurements of bedaquiline (12), clofazimine (24), and delamanid (19) were below the limit of detection. The median CSF concentrations of cycloserine at 2 and 6 hours were 15.90 and 15.10 µg/mL with adjusted CSF/serum ratios of 0.52 and 0.66. CSF concentrations of linezolid were 0.90 and 3.14 µg/mL at 2 and 6 hours, with adjusted CSF/serum ratios of 0.25 and 0.59, respectively. CSF serum linezolid concentrations were not affected by rifampin coadministration. CONCLUSIONS: Based on moderate to high CSF penetration, linezolid and cycloserine may be effective drugs for TBM treatment, whereas the utility of bedaquiline, delamanid, and clofazimine is uncertain given their low CSF penetration.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Antituberculosos/farmacología , Clofazimina/farmacología , Clofazimina/uso terapéutico , Cicloserina/uso terapéutico , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Tuberculosis Meníngea/diagnóstico
15.
Front Plant Sci ; 12: 708370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630459

RESUMEN

Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering ("transplastomics") of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the "Design-Build-Test-Learn" (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.

16.
Life (Basel) ; 11(9)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34575113

RESUMEN

Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to obtain reproducible and high levels of transgene expression. Here we describe a synthetic biology approach to screen several hundred independent transformants using standardised parts to explore different parameters that might affect transgene expression. We focused on terminators and, using a standardised workflow and quantitative outputs, tested 9 different elements representing three different size classes of native terminators to determine their ability to support high level expression of a GFP reporter gene. We found that the optimal size reflected the median size of element found in the C. reinhardtii genome. The behaviour of the terminator parts was similar with different promoters, in different host strains and with different transgenes. This approach is applicable to the systematic testing of other genetic elements, facilitating comparison to determine optimal transgene design.

17.
Vaccines (Basel) ; 9(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34579286

RESUMEN

A paucity of data exists evaluating a guardian's intent to vaccinate their child against COVID-19 in the United States. We administered 102 first (April-November 2020) and 45 second (December-January 2020-2021) surveys to guardians of children (<18 years) who had a laboratory-confirmed diagnosis of COVID-19 and assessed their intent to give a COVID-19 vaccine to their child, when one becomes available. The first and second surveys of the same cohort of guardians were conducted before and following the press releases detailing the adult Pfizer-BioNTech and Moderna Phase 3 results. Both surveys included an intent-to-vaccinate question using the subjective language of "if a safe and effective vaccine" became available, and a second question was added to second surveys using the objective language of "would prevent 19 of 20 people from getting disease". When using subjective language, 24 of 45 (53%) guardians endorsed vaccine administration for their children in the first survey, which decreased to 21 (46%) in the second survey. When adding objective language, acceptance of vaccination increased to 31 (69%, p = 0.03). Common reasons for declining vaccination were concerns about adverse effects and/or vaccine safety. Providing additional facts on vaccine efficacy increased vaccine acceptance. Evidence-based strategies are needed to increase pediatric COVID-19 vaccine uptake.

18.
Front Plant Sci ; 12: 671981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34226827

RESUMEN

Snow algae are an important group of terrestrial photosynthetic organisms in Antarctica, where they mostly grow in low lying coastal snow fields. Reliable observations of Antarctic snow algae are difficult owing to the transient nature of their blooms and the logistics involved to travel and work there. Previous studies have used Sentinel 2 satellite imagery to detect and monitor snow algal blooms remotely, but were limited by the coarse spatial resolution and difficulties detecting red blooms. Here, for the first time, we use high-resolution WorldView multispectral satellite imagery to study Antarctic snow algal blooms in detail, tracking the growth of red and green blooms throughout the summer. Our remote sensing approach was developed alongside two Antarctic field seasons, where field spectroscopy was used to build a detection model capable of estimating cell density. Global Positioning System (GPS) tagging of blooms and in situ life cycle analysis was used to validate and verify our model output. WorldView imagery was then used successfully to identify red and green snow algae on Anchorage Island (Ryder Bay, 67°S), estimating peak coverage to be 9.48 × 104 and 6.26 × 104 m2, respectively. Combined, this was greater than terrestrial vegetation area coverage for the island, measured using a normalized difference vegetation index. Green snow algae had greater cell density and average layer thickness than red blooms (6.0 × 104 vs. 4.3 × 104 cells ml-1) and so for Anchorage Island we estimated that green algae dry biomass was over three times that of red algae (567 vs. 180 kg, respectively). Because the high spatial resolution of the WorldView imagery and its ability to detect red blooms, calculated snow algal area was 17.5 times greater than estimated with Sentinel 2 imagery. This highlights a scaling problem of using coarse resolution imagery and suggests snow algal contribution to net primary productivity on Antarctica may be far greater than previously recognized.

19.
Algal Res ; 56: None, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34084707

RESUMEN

The application of microfluidic technologies to microalgal research is particularly appealing since these approaches allow the precise control of the extracellular environment and offer a high-throughput approach to studying dynamic cellular processes. To expand the portfolio of applications, here we present a droplet-based microfluidic method for analysis and screening of Phaeodactylum tricornutum and Nannochloropsis gaditana, which can be integrated into a genetic transformation workflow. Following encapsulation of single cells in picolitre-sized droplets, fluorescence signals arising from each cell can be used to assess its phenotypic state. In this work, the chlorophyll fluorescence intensity of each cell was quantified and used to identify populations of P. tricornutum cells grown in different light conditions. Further, individual P. tricornutum or N. gaditana cells engineered to express green fluorescent protein were distinguished and sorted from wild-type cells. This has been exploited as a rapid screen for transformed cells within a population, bypassing a major bottleneck in algal transformation workflows and offering an alternative strategy for the identification of genetically modified strains.

20.
J Pediatric Infect Dis Soc ; 10(9): 922-925, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34173667

RESUMEN

We defined the prevalence of neck pain, trismus, or dysphagia (28.4%) and retropharyngeal edema (2.9%) among 137 patients with multisystem inflammatory syndrome in children (MIS-c). Retropharyngeal edema or phlegmon has been documented radiologically in at least 9 children. Symptoms of neck inflammation are common in MIS-c.


Asunto(s)
Dolor de Cuello , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Edema/epidemiología , Edema/etiología , Humanos , Dolor de Cuello/epidemiología , Dolor de Cuello/etiología , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...